Industrial & Systems Engineering (ISE)

ISE 224 - INTRO INDUSTRIAL & SYSTEMS
Semester Hours: 3
Overview of industrial engineering concepts. Includes history and development of classical industrial engineering; documentation and computational methods; basic work methods and measurement; manufacturing systems; and economic decision analysis. Prerequisites: EGR 101.

ISE 299 - ISE MENTORING I
Semester Hours: 0
Yearly mentoring and advising from engineering faculty and staff. Prerequisite w/ concurrency: ISE 224.

ISE 324 - WORK DESIGN
Semester Hours: 3
Principles of methods analysis and ergonomics to fit a task and workstation to the human operator including work measurement and tools, work sampling, job analysis, anthropometric data, and workplace design. Laboratory exercises focus on the implementation of lean principles. (Same as PY 324) Prerequisites: ISE 390 or PY 300.

ISE 327 - MANAGEMENT SYSTEMS ANALYSIS
Semester Hours: 3
Formal organization structures and functions. Analysis of organization planning leading toward the accomplishment of goals. Techniques for making decisions within formal organizations, together with ethical constraints. Emphasis on technical writing. Prerequisite: ISE 390.

ISE 399 - ISE MENTORING II
Semester Hours: 0
Yearly mentoring and advising from engineering faculty and staff. Prerequisites: ISE 299 and ISE 391.

ISE 402 - INDUSTRIAL & ORGANIZA PSY
Semester Hours: 3
Application of basic principles of learning, motivation, and perception to typical industrial and organizational problems. Senior standing. (Same as PY 402/502).
ISE 403 - HUMAN FACTORS PSYCHOLOGY
Semester Hours: 3

ISE 421 - IMPROVING HEALTHCARE SYST
Semester Hours: 3
Overview of healthcare systems with emphasis on departments; functions and improving operational performance. Lean concepts and techniques are introduced as they specifically apply in a healthcare environment. Topics include workplace organization; patient and material flow; pull systems; value stream mapping; practical problem solving and root cause analysis. Multiple hands-on simulations and laboratory exercises are utilized to demonstrate the concepts.

ISE 422 - HEALTHCARE SYST ENGR
Semester Hours: 3
This course explores and introduces students to the systematic and quantitative analysis of healthcare systems. The purpose of this class is to increase the student's understanding of how to apply proven industrial and systems engineering methods to healthcare related problems. Potential topics include: healthcare, financing, health analytics, lean and six sigma as they relate to healthcare, reliability and patient safety, capacity management and healthcare logistics.

ISE 423 - INTR STATISTICAL QUALITY CONTR
Semester Hours: 3
Introduces statistical theory and techniques to control quality of manufacturing products. Provides a solid foundation in Statistical Quality Control. The Six Sigma methodology is also introduced in this course. Students can take the certification exam to earn Green Belt in Six Sigma. Prerequisite: ISE 391.

ISE 426 - DSGN & ANALY OF EXPERIM
Semester Hours: 3
Advanced topics in statistical experiments with emphasis on the design aspect. Factorial designs, including fractional replication and confounding. Includes computer laboratory exercises. (Same as ISE 526). Prerequisite: ISE 391.

ISE 428 - SYSTEMS ANALYSIS & DESIGN I
Semester Hours: 3
Philosophy and methods of industrial and non-industrial systems analysis and design. Methods of systems definition, analysis, simplification, evaluation, and optimization. Design project required. Ethics and technical writing are emphasized. Senior Standing. Prerequisites: ISE 124, ISE 321, ISE 340, ISE 391, and ISE 399 or EGR 399.

ISE 429 - SYS ANALYSIS/DESIGN II
Semester Hours: 3
Continuation of design project begun in ISE 428. Prerequisite: ISE 428.

ISE 430 - MANUF SYS & FACILITIES DESIGN
Semester Hours: 3
Modern manufacturing systems design with emphasis on facility location and plant layout. Includes classical systems, just-in-time systems, principles of integrated manufacturing systems design, and an analysis of process flow and productivity, and available space to determine facility layout. (Same as ISE 530) Prerequisites: ISE 324 or MAE 378.

ISE 433 - PROD & INVENTORY CONTROL SYS
Semester Hours: 3
Inventory models including classical optimal economic order quantity models, manufacturing resource planning systems, production scheduling, material requirements, and purchase order control. Emphasis on manufacturing system revisions, continuous process improvement, and implementation of lean principles. Prerequisite: ISE 390.

ISE 436 - INTRO TO ADDITIVE MFG
Semester Hours: 3
Overview course on additive manufacturing technologies, including 3D printing, prototyping, powder deposition, powder spraying, laminate materials manufacturing, ultrasonic consolidation, and other topics. Focus on design for manufacturing. Prerequisite: CE 211 or MAE 211.
ISE 437 - ELECTRONICS MANUF PROCESSES
Semester Hours: 3
Concepts, facilities, and technology utilized in the manufacture of electronic components and products. Includes printed wiring board fabrication and component mounting methods, automation, quality and reliability, product testing, and economic issues. Senior Standing. (Same as ISE 537).

ISE 439 - SELECTED TOPICS/ISE
Semester Hours: 1-3

ISE 447 - INTRO TO SYSTEMS SIMULATION
Semester Hours: 3

Philosophy and elements of digital, discrete-event simulation. Emphasis on modeling and analysis of stochastic systems, including probabilistic models, output analysis, and the use of simulation software. (Same as ISE 547) Prerequisites: CPE 112 and ISE 391.

ISE 480 - SYSTEMS ENGINEERING MODELING
Semester Hours: 3

The main goal of this course is to teach the student Model Based Systems Engineering (MBSE) fundamentals with application to real-world systems engineering problems. Students will learn (1) core systems engineering concepts and processes; (2) System Modeling Language (SysML) fundamentals and its use to develop and execute system models on a SysML based tool and (3) Architecture and physical model execution, simulation and integration.