SPA 522 - INTRODUCTION TO PLASMA PHYSICS
Semester Hours: 3
Provides students with an introduction to the basic physical processes associated with plasmas, which permeate all space environments. Both particle and fluid approaches are introduced, and a variety of elementary drift and wave phenomena are derived. Applications of the theory to various plasma instabilities are explored, along with specific examples of where these may occur in space science. While the goal of this course is to prepare students for more advanced topics in space physics, many of the fundamentals covered are equally relevant for students interested in plasma confinement and its associated engineering challenges.

SPA 526 - SPACE WEATHER
Semester Hours: 3
Physics of solar active regions, physics of solar flares and coronal mass ejections (CMEs), the propagation of CMEs, the acceleration and propagation of solar energetic particles, CME interaction with earth’s magnetosphere.

SPA 532 - SPACE ORIENTATION EDUCATORS
Semester Hours: 3
A weeklong course at the U.S. Space and Rocket Center in Huntsville, Alabama for pre-service and in-service teachers. The inquiry based workshops are taught around the theme of space exploration include activities to be done across the curriculum. All activities are correlated to National Math, Science, Technology, Social Studies, and Reading Standards. Activities based on curriculum developed by NASA, CAP, NSATA, and the USSRC. Topics include moon, mars, rocketry, propulsion, hydroponics, math, biology, history and literature.

SPA 582 - SCIENCE CAREER PREP
Semester Hour: 1
This course will review many of the soft skills necessary to function as a successful scientist, whether in an academic career, in a federal laboratory, a for-profit research career in a company, or even a commercial career. Your career begins with graduate school, and learning the skills for a successful graduate career will carry over to your professional career. The goal of the course is impart wisdom from successful graduate students and career scientists, providing both a basis for a successful graduate career and your subsequent career. The course will help students reduce the learning things “the hard way” approach by providing guidance for your career path. Each week will focus on a different skill that a career scientist requires.

SPA 610 - ADV MATH METHDS FOR SPA SCI
Semester Hours: 3
This course will focus on analytical methods for a series of advanced topics with an emphasis on practical applications to space science, such as Vector and Fourier Analysis, ODEs/PDEs in space science, and Green’s functions, Spherical Harmonics, Spectral Analysis, Wavelet Transforms, Fractals and Complexity, and Inverse Problems.

SPA 622 - CLASSICAL & QUANTUM STATISTICS
Semester Hours: 3

SPA 623 - TRANSPORT PROCESSES IN SPACE
Semester Hours: 3
Course presents a systematic treatment of classical and anomalous transport theory for gases, plasmas, energetic particles, and low frequency turbulence. The Chapman-Enskog approach is used to derive transport coefficients for neutral gases and collisional plasmas. The relationship between multi-fluid and MHD models is presented. Weak solutions and shock waves are discussed. The transport of energetic particles that experience scattering by magnetic field fluctuations is presented, together with basic models of the turbulence responsible for scattering turbulence transport in expanding flows such as the solar wind. Prerequisite: SPA 622 and SPA 522.

SPA 624 - SPACE PHYSICS I
Semester Hours: 3
A broad introduction to particle, MHD, and kinetic phenomena in space. This course is intended for all students interested in space, astro-, and plasma physics. Course covers fusion processes inside the Sun, solar neutrinos, solar atmosphere, coronal magnetic fields, physical mechanisms of magnetic field line reconnection and magnetic dynamo, the interaction between the solar wind with planets and the interstellar medium, corotating and merged interaction regions, collisional and collisionless shock waves in space. Includes an introduction to charged particle acceleration in the heliosphere. Examines differences between planetary magnetospheres, solar-terrestrial relationships, solar activity, climate, and culture. Prerequisite: SPA 522, SPA 631 (w/concurrency).
SPA 625 - SPACE PHYSICS II
Semester Hours: 3

The course develops a deeper understanding and knowledge of plasma instabilities, kinetic dispersion relations, microinstabilities, electrostatic and electromagnetic instabilities; advanced magnetohydrodynamics including MHD turbulence, reconnection; wave-particle interactions, including basic quasi-linear theory; weak and strong wave turbulence; nonlinear waves; collisionless shock waves. Prerequisite: SPA 624.

SPA 627 - HIGH ENERGY RADIATION DET&MSRM
Semester Hours: 3

This course will provide students with basic understanding of radiation detection for space-based missions. This course will cover the basic nuclear processes in radioactive sources and the interaction of radiation with matter. The statistical treatment of experimental data will be reviewed. General characteristics common to all types of detectors will be given. We will then cover specific classes of detectors focusing on ionization, scintillation and semiconductor detectors. Light collection and detection techniques will follow. The student will then be introduced to basic signal processing and timing techniques important to a successful instrument design. This course will be taught from a physicist point of view emphasizing the physical processes and interactions that make detection of radiation possible. This course is suitable for those students interested in detector development or astrophysical data analysis using state-of-the-art technology.

SPA 628 - SOLAR PHYSICS
Semester Hours: 3

The workings of the Sun, from its interior to the outer reaches of the corona and solar wind with emphasis on the fundamental physical processes from both observational and theoretical point of views, including energy release in core of the Sun and its transport to the solar atmosphere, dynamo theory and the generation of the magnetic field of the Sun, solar wind model and and interplanetary magnetic field, kinetic process and particle acceleration in solar flares, plasma emission and radiation transfer, electron beams and solar radio bursts, magnetic reconnection and solar flares.

SPA 629 - ASTROPHYSICAL FLUID DYNAMICS
Semester Hours: 3

Covers astrophysical phenomena occurring outside the boundaries of the solar system. Subjects include stellar structure and rotation, waves and instabilities in astrophysical plasmas, the physics of spherical and disk accretion, supernova blast waves, and charged particle transport and acceleration in cosmic plasmas. Introduction to the principles of stellar formation, helioseismology, stellar dynamo, coronal heating, and astrophysical turbulence. Prerequisite: SPA 522.

SPA 630 - WAVES IN FLUIDS
Semester Hours: 3

Comprehensive introduction to the science of wave motions in fluids. Waves and first-order (hyperbolic) equations, wave hierarchies; gas dynamics and fluid equations; acoustics, nonlinear plane waves, simple waves, shock waves and structure, shock reflection, similarity solutions, supersonic flows in gas dynamics; the wave equation, including plane, spherical and cylindrical waves, geometrical optics, including far-field approximation, caustics, nonhomogeneous media, anisotropy; water waves, including shallow water theory; group velocity, dispersion; nonlinear waves, including Korteweg-de Vries, sine-Gordon, and nonlinear Schrödinger equations, solitons. Prerequisite: SPA 610.

SPA 631 - WAVES AND FIELDS
Semester Hours: 3

SPA 632 - IONOSPHERIC AND MAGNETOSPHERIC
Semester Hours: 3

This course will give insights to the Earth's ionosphere and magnetosphere. Seminars cover basic concepts and fundamental plasma physics relevant to the ionosphere and magnetosphere, electrodynamics, electric circuit systems, geomagnetic storms, and substorms, auroras, etc. Training projects involve the use of satellite data and ground-based observations. Prerequisite: SPA 522.

SPA 634 - INTRO TO SPACE SCIENCE
Semester Hours: 3

In this course we survey a broad range of research areas that span a multitude of space environments. In each case we investigate the physical conditions of the environment, and look at some of the key current and past science questions and the techniques used to address them. We begin by studying basics of plasma physics and then apply the knowledge to the Sun, from its inner workings to its unusually hot atmosphere. This sets the stage for our subsequent survey of the solar wind and its interaction with planets that leads to the formation of magnetospheres. We also explore the techniques used to understand various space environments, from the design of detectors through the methods used to understand the collected data, to theoretical models and the computational techniques used to solve them.
SPA 636 - ADV SPACE WEATHER
Semester Hours: 3

Advanced topics in Space Weather with emphasis on practical effects and impacts on human technology and society: interaction of solar disturbances with Earth's magnetosphere, Solar Energetic Particles, and their effects; Forecasting and Nowcasting of Space Weather; Space Weather at Mars and other planets. Prerequisite: SPA 522.

SPA 662 - COMPUTATIONAL PHYSICS
Semester Hours: 3

SPA 663 - COMPUTATIONAL FLUID DYNMC &MHD
Semester Hours: 3

Numerical simulations of various problems in space physics, astrophysics, engineering, and plasma dynamics. Finite-volume and finite-difference, shock-capturing and shock-fitting methods for hyperbolic equations, including gas dynamics, MHD, and shallow water equations. The hierarchy of numerical methods is introduced in a systematic way, starting from standard linear schemes and arriving at modern discontinuity-capturing non-linear methods. Exact and approximate Riemann solvers, characteristic analysis of underlying equations. Different implementations of boundary conditions are introduced in relation with the mathematical properties of quasilinear hyperbolic systems. Prerequisites: SPA 624, SPA 662.

SPA 685 - ANALYSIS SPACECRAFT DATA
Semester Hours: 3

This course is to prepare students for observational research using spacecraft data, especially in-situ measurements of particles and fields. Students will first learn to access spacecraft databases and use softwares of their choice. Students will be introduced to common data analysis methods such as distribution function, model fitting, spectral analysis, etc. Examples of real spacecraft data will be shown to illustrate structures in the heliosphere, such as the HCS, ICME and interplanetary shocks. Finally, students will gain practical experience by working on research projects.

SPA 689 - SELECTED TOPICS
Semester Hours: 3

Selected Topics in Space Science not covered in other courses.

SPA 699 - MASTER'S THESIS
Semester Hours: 1-6

SPA 741 - PHYSICS OF COSMIC RAYS
Semester Hours: 3

Covers two principal areas of cosmic ray physics: 1) cosmic ray origin and acceleration, and 2) cosmic ray transport and detection. Includes galactic cosmic rays, anomalous cosmic rays, and solar energetic particles. Transport theory, acceleration mechanisms and observational signatures. Prerequisite: SPA 623.

SPA 742 - GAMMA-RAY BURSTS AND JETS
Semester Hours: 3

SPA 771 - COMPETITIVE GRANT WRITING WKSP
Semester Hour: 1

This course is designed for senior level graduate students who are about to graduate and start their professional career. It will introduce students to the real and complete process of competing for grant support. It is comprised of a series of lectures (workshops), case studies, and ends with a formal proposal from each participant and a mock review process.

SPA 789 - SELECTED TOPICS
Semester Hours: 3

Selected Topics in Space Science not covered in other courses.

SPA 796 - JOURNAL CLUB
Semester Hour: 1

This course requires graduate students to read, interpret and present literature critically to fellow students, researchers, and faculty. Students stay abreast of current knowledge in the field, develop presentation skills and promote department unity. Faculty instructor will lead, assign, and provide students feedback on their presentations.
SPA 799 - DOCTORAL DISSERTATION
Semester Hours: 1-9

Students must have passed the Comprehensive Examination at PhD level and have PhD advisor's approval. No more than 9 hours may be taken prior to passing the Qualifying Examination.