OSE 506 - COMMUNICATION THEORY
Semester Hours: 3


OSE 534 - OPTICAL FIBER COMMUNICATIONS
Semester Hours: 3

Introduction to optical fibers and their transmission characteristics, optical fiber measurements, sources and detectors, noise considerations for digital and analog communications, optical fiber systems.

OSE 541 - GEOMETRICAL OPTICS
Semester Hours: 3

Foundations and physics of geometrical optics, Fermat's principles and Huygen wavelets, refraction and reflection. The many forms of Snell's Law. Optical path lengths, geometrical wavefronts and rays. Ray tracing, ynu-chart and matrix methods. Gaussian imagery and paraxial optics, conjugate elements, cardinal points, and image-object relations. Stops and pupils, chief and marginal rays, vignetting, and the optical or Lagrange invariant. The y-y bar diagram, design of common systems: objectives, magnifiers, microscopes, collimators and detectors. Optical glasses and chromatic aberrations, wavefront and transverse aberrations, spot diagrams and ray fan plots.

OSE 542 - PHYSICAL OPTICS
Semester Hours: 3

Scalar and electromagnetic waves, polarization, coherence, reflection and refraction; two beam and multiple beam interference, interferometers, Fabry-Perots, thin films, diffraction, and absorption and dispersion. (Same as OSE 542 and EE 542.) Fall, Spring.

OSE 546 - RADIOMETRY, DETECTORS & SOURCE
Semester Hours: 3

Theory and practice of radiometry and photometry. Blackbody radiation and Lambertian sources. Propagation of radiant energy in free space and through optical systems. Detector classes, responsivity, bandwidth and noise, power spectral density, properties of sources, photon noise.

OSE 555 - INTRO QUANTUM MECHANICS I
Semester Hours: 3

Waves and particles; Bohr's model of the atom; de Broglie waves, wave packets and the uncertainty principle; postulates of quantum mechanics; Schroedinger's equation; simple systems in one, two and three dimensions; the hydrogen atom.

OSE 570 - OPT & PHOTONIC SYSTEMS DESIGN
Semester Hours: 3

Review of paraxial optics, ray tracing codes, aberration and diffraction calculations; acousto- and electro-optic modulators, spatial light modulators; fibers, fiber splicers and connectors; gratings and diffractive optical elements; laser and light emitting diodes, photodetectors and CCD arrays; correlator systems; optical communication networks; signal processing systems design.

OSE 632 - FOURIER OPTICS
Semester Hours: 3

Introducing the optical system as an invariant linear system, convolution, Sommerfield's diffraction integral, Fourier Transform, angular spectrum, coherent and incoherent imaging, optical transfer function.

OSE 634 - OPTICAL COMMUNICATIONS
Semester Hours: 3

Optical communication systems; counting statistics; the optical detector response process; direct detection; heterodyne detection parameter estimation in optical communications; pointing, spatial acquisition and tracking.

OSE 645 - LASERS
Semester Hours: 3

OSE 653 - OPTICAL TESTING LAB
Semester Hour: 1

Provides students with hands-on experience via the in-depth testing of an aerial reconnaissance photographic lens. The main measurement tools are a 168-inch Collimator/T-Bar nodal slide for image plane measurements, and a Fizeau phase shifting interferometer for exit pupil measurements. Measurements include: effective focal length, F-number, axial color, spherical aberration, field curvature, distortion, astigmatism, transmission, relative illumination falloff, resolution, modulation transfer function, on-axis interferometry, fringe analysis. Prerequisite: OSE 654.

OSE 654 - OPTICAL TESTING
Semester Hours: 3

Spherometry; refractive index measurements; optical bench measurements of imaging systems via T-bar nodal slide (effective focal length, f-number, axial color, field curvature and distortion, transverse ray aberrations); illumination falloff; image resolution tests (finite object); modulation transfer function; star image testing; knife edge tests; Hartmann tests; Fizeau interferometer and testing configurations; null lens testing of aspheres; wavefront measurements (point diffraction interferometer, radial shear interferometer). Prerequisites: OSE 541 and OSE 542.

OSE 655 - APPLIED QUANTUM MECHANICS
Semester Hours: 3

Application of quantum mechanics in solid state, electronics, materials science and optics. Topics to include: Hydrogen atom and molecule, excitons, phonons, Bloch's theorem, periodic boundary conditions, electrons and holes, band structure of simple semiconductors, dipole transitions, optical constants, absorption and emission processes, introduction to device physics.

OSE 656 - LENS DESIGN
Semester Hours: 3

Design of refractive imaging systems. Skills acquired include thin lens pre-design, first and third order analytical methods, and computer-based design using Zemax. Designs include: Wollaston and Chevalier landscape lenses, a 10X microscope objective, the Rapid Rectilinear and Celor lenses, Cooke triplet and Petzval portrait lenses, and a telephoto lens. Prerequisites OSE 541 or EE 541 or PH 541 or Permission of Instructor.

OSE 670 - OPT DESIGN & MANUFACTURING
Semester Hours: 3

Practical aspects of optomechanical design, material selection, fabrication and integration of precision optical components and systems for commercial, space, and military application. Topics include: fixture design, tolerance analysis, machining methods, thermal stabilization, integrated computer-aided design and analysis, diamond machining, finishing and plating techniques.

OSE 690 - SEL TOPICS IN OPT SCI & ENGR
Semester Hours: 1-3

Sample topics include optical thin films and optical instrument systems analysis.

OSE 710 - OPTICAL SYSTEM DESIGN
Semester Hours: 3

Integrated view of what it actually takes to build a real optical system. All the tools of the ‘trade’ are utilized, including conceptual design and computer modeling (optical and mechanical), control system design, fabrication issues, cost/schedule and system testing. Use of geometric and physical optics, radiometry, sources and detectors, electro-optics controlled positioning and feedback, environmental influences, optical systems architecture, opto-mechanical design, precision optics fabrication technologies, optical metrology, and operational and survivability testing.

OSE 742 - OPTICAL SCATTERING THEORY
Semester Hours: 3

Scattering and absorption of radiation by particles with spherical symmetry and arbitrary shapes described using Maxwell’s equations, vector Helmholtz equations, the Jones and Mueller calculus, and numerical techniques. Prerequisites: PH 631, or EE 609, or ATS 561.

OSE 755 - QUANTUM DEVICES
Semester Hours: 3

Quantum aspects of optical, electronic, and semiconductor devices approached from a phenomenological/physical point of view. Topics will include: Quantum well devices, optical modulators, optical detectors, quantum Stark effects, electro-optic devices, high speed optical devices, frequency chirping in high speed devices and system applications.

OSE 790 - SEL TOPICS IN OPT SCI & ENGR
Semester Hours: 1-3

Sample topics include optical thin films and optical instrument systems analysis.
OSE 792 - OSE SEMINAR
Semester Hours: 0

This "brown bag" monthly seminar series is conducted jointly with the Huntsville Electro-Optical Society which sponsors the speakers. Presentations are given on a diverse range of optics and optics-related topics. All OSE students are expected to attend three of these seminars per semester.

OSE 799 - DOCTORAL DISSERTATION
Semester Hours: 3-9

Required each semester student is enrolled and receiving direction on a doctoral dissertation. The following optics courses are also available to students in the OSE program. See listings under indicated departments.