Industrial and Systems Engineering and Engineering Management

Mission

The mission of the Industrial & Systems Engineering and Engineering Management (ISEEM) program is to provide integrated, applications-oriented education and research programs in the areas of Industrial Engineering, Systems Engineering, and Engineering Management to support the needs of students and organizations in the Huntsville, Alabama, area and beyond.

Degrees

Master of Science in Engineering (Engineering Management, Industrial Engineering, Systems Engineering concentrations)
Master of Science in Operations Research

The ISEEM Department offers major options and associated minors in the subject areas of Operations Research, Industrial Engineering, Systems Engineering, and Engineering Management. All students are encouraged to tailor their graduate programs with a blend of theory and applications. ISEEM faculty are actively involved in research programs, which affords graduate students opportunities for coursework and research inquiry in the areas described above. Please contact the ISEEM Department (256.824.6256) or visit the ISEEM home page at http://www.uah.edu/iseem for further details.

Industrial and Systems Engineering, MSE & MSOR

Additional Admission Requirements

The requirements for admission for graduate study in an ISEEM program conform to the policies of the UAH Graduate School and the College of Engineering. In addition, ISEEM requires the following:

1. ABET-accredited B.S. degree in engineering
2. GPA of 3.000 or better, GPA of 3.500 or better at the graduate level
3. Minimum GRE scores of 150 Verbal, 155 Quantitative, and 4.0 Analytical Writing (old scores: 400 or better Verbal, 500 or better Quantitative, and a combined score of 1000 or better, Analytical Writing score of 4.0 or better). ISEEM requires the GRE, however candidates can petition the department for a waiver if their experience and/or academic achievement merits a waiver.

Additionally, the Ph.D. Engineering Management and Systems Engineering options have a preference of five years of work experience in an engineering position beyond the B.S. degree or current full-time employment as an engineer.

General Requirements

Students pursuing an MSE option or the MSOR under ISEEM must follow the requirements for either Plan I (Thesis Option) or Plan II (Non-Thesis Option). Both plans require 24 credit hours of approved graduate coursework. Plan I requires a minimum of six credit hours of thesis work and the successful completion of the thesis as approved by the supervisory committee. Plan II requires an additional six credit hours of approved graduate coursework.

MSE Concentrations

The MSE-Engineering Management Concentration was developed to meet the needs of practicing engineers who find themselves performing engineering management functions without the benefit of a formal management education. The Engineering Management Concentration is designed to build upon the mathematical and analytical expertise gained from both a formal engineering education and professional experience. The Engineering Management curriculum emphasizes the application of the management function in the technological setting, while recognizing the basic and applied sciences in engineering systems. To learn more or request additional information, please visit the Engineering Management web page (https://www.uah.edu/admissions/learn-more-mseem/).

The MSE-Industrial Engineering Concentration is offered to engineers who possess a bachelor’s degree in a traditional engineering discipline and who have the desire to broaden their engineering problem-solving skills. This is accomplished by providing them with a better understanding
of traditional and contemporary problem-solving skills in the areas of operation research, quality control, computer integrated manufacturing, and simulation. The program is applications oriented and can be tailored to fit the individual needs of the student.

The MSE-Systems Engineering Concentration offered for engineers who possess a bachelor’s degree in a field other than Industrial & Systems Engineering and who have the desire to broaden their background into systems-oriented aspects of engineering, or for those students who have an Industrial & Systems Engineering bachelor’s degree and wish to further their systems skills. With a curriculum focused on needs identification, cost-benefit analysis, the system life cycle, quality control, multi-disciplinary optimization, model-based systems engineering and digital engineering, the program provides students with the analysis and design tools to supplement those learned in their undergraduate engineering program.

MS Operations Research
The M.S. in Operations Research option is for students who wish to broaden their background into operations research. Courses in the curriculum include linear programming, optimization, queueing, Markov processes, and systems modeling.

Industrial and Systems Engineering, PhD.
The Ph.D. in Industrial Engineering offers majors in Engineering Management, Industrial Engineering, or Systems Engineering. The content of these programs can vary to suit the needs and goals of the student.

Additional Admission Requirements
The requirements for admission for graduate study in an ISEEM program conform to the policies of the UAH Graduate School and the College of Engineering and are listed as follows:

1. ABET-accredited B.S. degree in engineering
2. GPA of 3.000 or better
3. Minimum GRE scores of 150 Verbal, 155 Quantitative, and 4.0 Analytical Writing (old scores: 400 or better Verbal, 500 or better Quantitative, and a combined score of 1,000 or better, Analytical Writing score of 4.0 or better). ISEEM requires the GRE, however, candidates can petition the department for a waiver if their experience and/or academic achievement merits a waiver.

Additionally, the MSE Engineering Management and Systems Engineering options prefer two years of work experience in an engineering position beyond the B.S. degree or current full-time employment as an engineer.

General Requirements and Exams
Students pursuing a Ph.D. option under ISEEM must complete 48 credit hours of approved graduate coursework beyond the bachelor’s degree. A maximum of six hours of master’s thesis credit may be included in the 48 credit-hour requirement. A Program of Study (POS) must be submitted to the student’s supervisory committee for review and approval.

The Ph.D. program in the ISEEM Department has a Preliminary Examination requirement under which students must achieve a 4.000 GPA in their core courses. If courses fail to meet the GPA requirement, they may be retaken until the requirement is met.

After completing the coursework on the POS, students will complete a Comprehensive Exam that either contains both written and oral portions, or, at the option of the student’s committee, is based on writing a journal article.

After passing the Comprehensive Exam, students will prepare a dissertation proposal to satisfy the Qualifying Examination requirement. All newly admitted Ph.D. students will be required to complete their degree within 10 calendar years after admission. If a student does not complete the degree within the 10-year limit, the student will automatically be withdrawn from the Ph.D. program and from the College of Engineering. Students may reapply to UAH after the 10-year limit.

Foundation Courses
Outstanding students (3.500 GPA) from other technical fields may gain admittance to the College of Engineering MSE and Ph.D. graduate programs by completing the following courses, or equivalents, as approved by ISEEM faculty. Applicants who have passed the Fundamental of Engineering Exam (FE) may substitute the exam for the courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 171</td>
<td>CALCULUS A</td>
<td>4</td>
</tr>
<tr>
<td>MA 172</td>
<td>CALCULUS B</td>
<td>4</td>
</tr>
<tr>
<td>MA 201</td>
<td>CALCULUS C</td>
<td>4</td>
</tr>
<tr>
<td>MA 238</td>
<td>APPLIED DIFFERENTIAL EQUATIONS</td>
<td>3</td>
</tr>
<tr>
<td>MA 244</td>
<td>INTRODUCTION TO LINEAR ALGEBRA</td>
<td>3</td>
</tr>
</tbody>
</table>

Science
PH 111 GENERAL PHYSICS WITH CALCULUS I 3
PH 112 GENERAL PHYSICS WITH CALCULUS II 3
CH 121 GENERAL CHEMISTRY I 3

Engineering
EE 213 ELECTRICAL CIRCUIT ANALYSIS I 3
MAE 271 STATICS 3
MAE 341 THERMODYNAMICS I 3
MAE 370 MECHANICS OF MATERIALS 3

Total Semester Hours 39

Master's Programs in Industrial and Systems Engineering and Engineering Management
- Industrial and Systems Engineering, MSE (http://catalog.uah.edu/grad/colleges-departments/engineering/industrial-systems-engineering-and-engineering-management/industrial-systems-engineering-mse/)
- Industrial and Systems Engineering, MSOR (http://catalog.uah.edu/grad/colleges-departments/engineering/industrial-systems-engineering-and-engineering-management/industrial-systems-engineering-msor/)
- Engineering Management (http://catalog.uah.edu/grad/colleges-departments/engineering/industrial-systems-engineering-and-engineering-management/engineering-management/)

Doctoral Program in Industrial Engineering
- Industrial and Systems Engineering, PhD (http://catalog.uah.edu/grad/colleges-departments/engineering/industrial-systems-engineering-and-engineering-management/industrial-systems-engineering-phd/)

ISE 502 - INDUSTRIAL & ORGANIZA PSY
Semester Hours: 3
Application of basic principles of learning, motivation, and perception to typical industrial and organizational problems.

ISE 503 - HUMAN FACTORS PSYCHOLOGY
Semester Hours: 3

ISE 521 - IMPROVING HEALTHCARE SYSTEMS
Semester Hours: 3
Overview of healthcare systems with emphasis on departments, functions, and improving operational performance. Lean concepts and techniques are introduced as they specifically apply in a healthcare environment. Topics include workplace organization, patient and material flow, pull systems, value stream mapping, problem solving, and root cause analysis. Hands on simulations will be utilized.

ISE 522 - HEALTHCARE SYSTEMS ENGINEERING
Semester Hours: 3
This course introduces students to systematic and quantitative analysis of healthcare systems. The purpose of this class is to increase the student's understanding of how to apply proven industrial and systems engineering methods to healthcare related problems. Potential topics include: healthcare financing, health analytics, six sigma as they relate to healthcare, reliability and patient safety, capacity management, and healthcare logistics.

ISE 523 - INTR STATISTICAL QUALITY CONTR
Semester Hours: 3
This course introduces statistical theory and techniques to control quality of manufacturing products. This course will provide a solid foundation in Statistical Quality Control (SQC). The Six Sigma methodology is also introduced in this course. Students can take the certification exam to earn a Green Belt in Six Sigma. Prerequisites: ISE 690.

ISE 526 - DESIGN/ANALY OF EXPERIMENT
Semester Hours: 3
Advanced topics in statistical experiments with emphasis on design aspect. Confounding, fractional replication, factorial and nested design.

ISE 530 - MANUF SYS & FACILITIES DESIGN
Semester Hours: 3
Overview of modern manufacturing systems design with emphasis on facility location and plant layout. Includes classical systems, just-in-time systems, basic principles of integrated manufacturing systems design, as well as analysis of process flow, process productivity, and available space to determine plant layout. Includes laboratory exercises.
ISE 533 - PRODUCTION/INVENTORY CONTR SYS
Semester Hours: 3
Inventory models including classical optimal economic order quantity models, manufacturing resource planning (MRP) systems, master production scheduling, material requirements planning, and purchase order control. Emphasis on manufacturing system revision, continuous process improvement, and the implementation of lean principles. Prerequisite: ISE 690.

ISE 539 - SELECTED TOPICS/ISE
Semester Hours: 1-3

ISE 547 - INTRO TO SYSTEMS SIMULATION
Semester Hours: 3
Philosophy and elements of digital discrete-event simulation. Emphasis on modeling and analysis of stochastic systems, including probabilistic models, output analysis, and use of simulation software. Prerequisite: ISE 690.

ISE 580 - SYSTEMS ENGINEERING MODELING
Semester Hours: 3
The main goal of this course is to teach the student Model Based Systems Engineering (MBSE) fundamentals with application to real-world systems engineering problems. Students will learn (1) core systems engineering concepts and processes; (2) System Modeling Language (SysML) fundamentals and its use to develop and execute system models on a SysML based tool and (3) Architecture and physical model execution, simulation and integration.

ISE 623 - ENGR ECON ANALYSIS
Semester Hours: 3
This course is designed for graduate students in industrial engineering, systems engineering and engineering management. This course involves mathematical models for expenditure analysis under uncertainty; investment decision criteria; capital planning and budgeting; and decisions involving expansion, acquisitions, replacement, and disinvestment. Prerequisite: ISE 690.

ISE 626 - INTRO OPERATIONS RESEARCH
Semester Hours: 3
Philosophy and methodology of operations research. Includes linear programming, game theory, sequencing, and networks.

ISE 627 - ENGINEERING SYSTEMS
Semester Hours: 3
Development of a systems-scientific framework for the integration of systems theory, systems thinking, systems engineering, and systems management. Emphasis is on the conception, design, and management of systems to accommodate complex environments.

ISE 629 - OPTIMIZE AEROSPACE SYST DSGN
Semester Hours: 3
in this project course, students will learn to model an aerospace system they are designing and optimize the system using the model. Linear, nonlinear, and discrete optimization are addressed. This course is targeted to students in systems engineering and aerospace systems engineering. Prerequisite with concurrency: ISE 627.

ISE 638 - ENGINEERING RELIABILITY
Semester Hours: 3
Methodology of reliability prediction including application of discrete and continuous distribution models. Reliability estimation, reliability logic diagrams, life testing, and reliability demonstrations.

ISE 639 - SELECTED TOPICS/ISE
Semester Hours: 1-6

ISE 641 - ADVANCED QUALITY CONTROL
Semester Hours: 3
This capstone course uses advanced statistical quality tools such as autocorrelated data, multi-variate quality controls charts, response surface methodology, ridge analysis, and evolutionary operations (EVOP). Advanced Six Sigma concepts will be taught and students will have the opportunity to earn a Black Belt in Six Sigma upon successful completion of the certification exam and an acceptable project.

ISE 690 - STATISTICAL METHODS FOR ENGR
Semester Hours: 3
Application of statistics for estimation and inference using parametric and nonparametric methods. Descriptive statistics, sampling distributions, point and interval estimates, tests of hypotheses, ANOVA, and linear regression.
ISE 696 - GRAD INTERN ISE ENGR
Semester Hours: 1-9

Active involvement in an engineering project in an engineering enterprise, professional organization, or government agency that has particular interest and relevance to the graduate student. Permission of ISE faculty member required.

ISE 697 - INDUS & SYSTEMS ENGR PROJECT I
Semester Hours: 3-9

Application oriented student project designed to show competence in Industrial and Systems Engineering.

ISE 699 - MASTER'S THESIS
Semester Hours: 9

Required each semester student is working and receiving direction on a master's thesis. Minimum of two semesters and 6 hours required for M.S.E. students. A maximum of 9 hours of credit is awarded upon successful completion of master's thesis. The 0 hour option is only available to students who have successfully defended their thesis and submitted it for approval, but do not meet the deadlines for graduation in the semester submitted. Students may only use the 0 hour option once in their career.

ISE 726 - SYSTEMS MODELING
Semester Hours: 3

The capstone course for the operations research option studies the philosophy and methodology for modeling probabilistic systems. Includes Markov processes, queueing theory, and inventory theory. Team project required. Prerequisite: ISE 690 and (ISE 626 or ISE 627).

ISE 734 - DECISION ANALYSIS
Semester Hours: 3

Decision making for systems engineering and engineering management, with an emphasis on applications to complex systems. Builds a rigorous foundation in decision making under uncertainty using expected utility theory. Topics include decision trees, value models, predictive models, preferences and bias. Prerequisite: ISE 690.

ISE 739 - SELECTED TOPICS/ISE
Semester Hours: 1-6

ISE 761 - EVOL THRY ENG MGMT/IND SYS ENG
Semester Hours: 3

Development of applicable engineering management or industrial and systems engineering theory using classical concepts, contemporary studies and practices at successful technology-based organizations.

ISE 790 - ADV STATISTICAL APPLICATIONS
Semester Hours: 3

Continuation of ISE 690 with extension to regression models and nonparametric methods. Prerequisite: ISE 690.

ISE 799 - DOCTORAL DISSERTATION
Semester Hours: 9

Required each semester student is working and receiving direction on a doctoral dissertation. The 0 hour option is only available to students who have successfully defended their dissertation and submitted it for approval, but do not meet the deadlines for graduation in the semester submitted. Students may only use the 0 hour option once in their career.

EM 660 - ENGR MGMT THEORY
Semester Hours: 3

Comparison of classical management principles and theory with the current systems in high technology, research and development, and other scientific-engineering organizations. Use of people systems to accomplish goals in high technology organizations. Cases used to illustrate contemporary problems and environments.

EM 666 - ENGR PROJECT MANAGEMENT
Semester Hours: 3

Management and control of multifaceted engineering and technological projects. Coordination and interactions between client and various service organizations. Project manager selection. Typical problems associated with various phases of project life cycle. Case studies illustrate theories and concepts.

EM 679 - SELECTED TOPICS IN ENGR MGMT
Semester Hours: 3-9
EM 697 - ENGR MANAGEMENT PROJECT I
Semester Hours: 3-9
Application-oriented student project designed to show competence in engineering management.

EM 699 - MASTER'S THESIS
Semester Hours: 9
Required each semester student is working and receiving direction on a master's thesis. Minimum of two semesters and 6 hours required for M.S.E. students. A maximum of 9 hours of credit is awarded upon successful completion of master's thesis. The 0 hour option is only available to students who have successfully defended their thesis and submitted it for approval, but do not meet the deadlines for graduation in the semester submitted. Students may only use the 0 hour option once in their career.

EM 747 - STRATEGIC ENGINEERING MGT
Semester Hours: 3
Analysis of creating an organizational strategy for engineering and technology-based enterprises; identifying critical value streams and creating supplier and customer partnerships. Development of skills for leadership and management of innovation. Prerequisite: EM 660.

EM 760 - ENGR MGMT STRUCTURES & SYSTEMS
Semester Hours: 3
The course studies the impact of various organization structures in relation to the goals of high technology enterprises. Use and effectiveness of contemporary organizational systems as related to the knowledge worker. Cases used to illustrate contemporary problems and environments. Prerequisite: EM 660.

EM 761 - EVOL THRY ENG MGMT/IND SYS ENG
Semester Hours: 3
Development of applicable engineering management or industrial & systems engineering using classical concepts, contemporary studies, and practices at successful technology-based organizations.

EM 766 - MANAGING CHG IN HIGH TECH ORG
Semester Hours: 3
Challenges to implementing advanced technology equipment, systems, and methods in engineering organizations. Justifying technology, assimilating change, changing management roles, personnel practices and organizational structure, and dealing with impact of new technologies on business policies and strategic planning. Prerequisite: EM 666.

EM 779 - SELECTED TOPICS IN ENGR MGMT
Semester Hours: 3-9

EM 799 - DOCTORAL DISSERTATION
Semester Hours: 9
Required each semester student is working and receiving direction on a doctoral dissertation. The 0 hour option is only available to students who have successfully defended their dissertation and submitted it for approval, but do not meet the deadlines for graduation in the semester submitted. Students may only use the 0 hour option once in their career.